MATH 245 S21, Exam 1 Solutions

2. Prove or disprove: If a is an even integer, then $\frac{a^{3}}{4}$ must be even.

The statement is true, and here is a direct proof. Suppose that a is an even integer. Now, there must be some integer b with $a=2 b$. Now, $\frac{a^{3}}{4}=\frac{(2 b)^{3}}{4}=\frac{8 b^{3}}{4}=2 b^{3}$. Note that b^{3} must be a integer, being the product of integers b, b, b. Hence, $\frac{a^{3}}{4}$ is twice an integer, so it must be even.
3. Let p, q be propositions. Simplify the following expression as much as possible (where only basic propositions are negated): $\neg(p \leftrightarrow q)$.
Applying Theorem 2.17 to $p \leftrightarrow q$, we find that our proposition is equivalent to $\neg((p \rightarrow q) \wedge(q \rightarrow p))$. We apply De Morgan's Law to get $(\neg(p \rightarrow q)) \vee(\neg(q \rightarrow p))$. We can now finish in two different ways.
METHOD 1: Apply Thm 2.16 twice, to get $(p \wedge \neg q) \vee(q \wedge \neg p)$.
METHOD 2: Apply Conditional Interpretation twice, to get $(\neg(q \vee \neg p)) \vee(\neg(p \vee \neg q))$. Apply De Morgan's Law twice to get $((\neg q) \wedge \neg \neg p) \vee((\neg p) \wedge \neg \neg q)$. Lastly, apply Double Negation twice to get $((\neg q) \wedge p) \vee((\neg p) \wedge q)$.
4. Let p, q, r, s be propositions. Prove $p \rightarrow(q \vee r), q \rightarrow s, r \rightarrow s \vdash p \rightarrow s$.

We begin by assuming that $p \rightarrow(q \vee r), q \rightarrow s$, and $r \rightarrow s$ are all true. Most proofs will have cases.
SOLUTION 1: We break into cases depending on if s is true or false. If s is true, then $p \rightarrow s$ is true trivially. If s is false, then $\neg r$ by modus tollens with $r \rightarrow s$. Also, if s is false, then $\neg q$ by modus tollens with $q \rightarrow s$. By conjunction, $(\neg r) \wedge(\neg q)$. By De Morgan's Law, $\neg(r \vee q)$. Then $\neg p$ by modus tollens with $p \rightarrow(q \vee r)$. Finally, $p \rightarrow s$ is true vacuously.
SOLUTION 2: Applying conditional interpretation to $p \rightarrow(q \vee r)$, we get $q \vee r \vee \neg p$. This gives three cases. Case q : We get s by modus ponens with $q \rightarrow s$, so $p \rightarrow s$ is true trivially. Cased r : we get s by modus ponens with $r \rightarrow s$, so $p \rightarrow s$ is again true trivially. Case $\neg p$: Now $p \rightarrow s$ is true vacuously.
SOLUTION 3: It is also possible to do this with a huge truth table (9 columns, 16 rows!). Unless you don't mind spending half the exam time on one problem, this is not recommended.
5. Prove or disprove: For all $p \in \mathbb{N}$, if p^{2} is prime then p is prime.

The statement is true. All correct solutions must consider $p=1$ separately from $p>1$, and prove that p^{2} is not prime using Definition 1.16.
SOLUTION 1: vacuous proof. We will prove that p^{2} is never prime. There are two cases, either $p=1$ or $p>1$. If $p=1$ then $p^{2}=1$, and so p^{2} is not prime (primes must be integers at least 2). If instead $p>1$, then there exists an integer p with $1<p<p^{2}$ and $p \mid p^{2}$, so p^{2} is composite and hence not prime.
SOLUTION 2: contrapositive proof. Suppose that p is not prime. Hence either $p=1$, or there is some $a \in \mathbb{N}$ with $1<a<p$ and $a \mid p$. In the case $p=1$, then $p^{2}=1$, so p^{2} is not prime. In the other case, there must be some $b \in \mathbb{N}$ with $p=a b$. Then, we have $p^{2}=a(b p)$. Hence $a \mid p^{2}$, and also $1<a<p^{2}$, so p^{2} is composite and hence not prime. In both cases, p^{2} is not prime.
6. Prove or disprove: $\forall x \in \mathbb{N}, \exists y \in \mathbb{Q},|x-y|=|y|$.

The statement is true. Let $x \in \mathbb{N}$ be arbitrary. Choose $y=\frac{x}{2}$, which must be in \mathbb{Q}. Now $|x-y|=\left|x-\frac{x}{2}\right|=\left|\frac{x}{2}\right|=|y|$. Hence $|x-y|=|y|$.
7. Prove or disprove: $\forall x \in \mathbb{N}, \exists y \in \mathbb{N},|x-y|=|y|$.

The statement is false. Choose $x=1$, and let $y \in \mathbb{N}$ be arbitrary. Because $y \geq 1,1-y \leq 0$, so we have $|x-y|=|1-y|=-(1-y)=y-1$. But also $|y|=y$, since $y \geq 0$. Now $y \neq y-1$, hence $|x-y| \neq|y|$.

Comparing the last two questions, we see that the difference is whether y is allowed to be rational or not. If $x=1$, we need to make $y=\frac{1}{2}$ to make the two absolute values equal.

