2. Prove or disprove: If a is an even integer, then $\frac{a^3}{4}$ must be even.

The statement is true, and here is a direct proof. Suppose that a is an even integer. Now, there must be some integer b with a = 2b. Now, $\frac{a^3}{4} = \frac{(2b)^3}{4} = \frac{8b^3}{4} = 2b^3$. Note that b^3 must be a integer, being the product of integers b, b, b. Hence, $\frac{a^3}{4}$ is twice an integer, so it must be even.

- 3. Let p,q be propositions. Simplify the following expression as much as possible (where only basic propositions are negated): ¬(p ↔ q).
 Applying Theorem 2.17 to p ↔ q, we find that our proposition is equivalent to ¬((p → q) ∧ (q → p)). We apply De Morgan's Law to get (¬(p → q)) ∨ (¬(q → p)). We can now finish in two different ways.
 METHOD 1: Apply Thm 2.16 twice, to get (p ∧ ¬q) ∨ (q ∧ ¬p).
 METHOD 2: Apply Conditional Interpretation twice, to get (¬(q ∨ ¬p)) ∨ (¬(p ∨ ¬q)). Apply De Morgan's Law twice to get ((¬q) ∧ ¬¬p) ∨ ((¬p) ∧ ¬¬q). Lastly, apply Double Negation twice to get ((¬q) ∧ p) ∨ ((¬p) ∧ q).
- 4. Let p, q, r, s be propositions. Prove $p \to (q \lor r), q \to s, r \to s \vdash p \to s$.

We begin by assuming that $p \to (q \lor r), q \to s$, and $r \to s$ are all true. Most proofs will have cases. SOLUTION 1: We break into cases depending on if s is true or false. If s is true, then $p \to s$ is true trivially. If s is false, then $\neg r$ by modus tollens with $r \to s$. Also, if s is false, then $\neg q$ by modus tollens with $q \to s$. By conjunction, $(\neg r) \land (\neg q)$. By De Morgan's Law, $\neg (r \lor q)$. Then $\neg p$ by modus tollens with $p \to (q \lor r)$. Finally, $p \to s$ is true vacuously.

SOLUTION 2: Applying conditional interpretation to $p \to (q \lor r)$, we get $q \lor r \lor \neg p$. This gives three cases. Case q: We get s by modus ponens with $q \to s$, so $p \to s$ is true trivially. Cased r: we get s by modus ponens with $r \to s$, so $p \to s$ is again true trivially. Case $\neg p$: Now $p \to s$ is true vacuously.

SOLUTION 3: It is also possible to do this with a huge truth table (9 columns, 16 rows!). Unless you don't mind spending half the exam time on one problem, this is not recommended.

5. Prove or disprove: For all $p \in \mathbb{N}$, if p^2 is prime then p is prime.

The statement is true. All correct solutions must consider p = 1 separately from p > 1, and prove that p^2 is not prime using Definition 1.16.

SOLUTION 1: vacuous proof. We will prove that p^2 is never prime. There are two cases, either p = 1 or p > 1. If p = 1 then $p^2 = 1$, and so p^2 is not prime (primes must be integers at least 2). If instead p > 1, then there exists an integer p with $1 and <math>p|p^2$, so p^2 is composite and hence not prime.

SOLUTION 2: contrapositive proof. Suppose that p is not prime. Hence either p = 1, or there is some $a \in \mathbb{N}$ with 1 < a < p and a|p. In the case p = 1, then $p^2 = 1$, so p^2 is not prime. In the other case, there must be some $b \in \mathbb{N}$ with p = ab. Then, we have $p^2 = a(bp)$. Hence $a|p^2$, and also $1 < a < p^2$, so p^2 is composite and hence not prime. In both cases, p^2 is not prime.

- 6. Prove or disprove: $\forall x \in \mathbb{N}, \exists y \in \mathbb{Q}, |x y| = |y|$. The statement is true. Let $x \in \mathbb{N}$ be arbitrary. Choose $y = \frac{x}{2}$, which must be in \mathbb{Q} . Now $|x - y| = |x - \frac{x}{2}| = |\frac{x}{2}| = |y|$. Hence |x - y| = |y|.
- 7. Prove or disprove: $\forall x \in \mathbb{N}, \exists y \in \mathbb{N}, |x y| = |y|$.

The statement is false. Choose x = 1, and let $y \in \mathbb{N}$ be arbitrary. Because $y \ge 1$, $1 - y \le 0$, so we have |x - y| = |1 - y| = -(1 - y) = y - 1. But also |y| = y, since $y \ge 0$. Now $y \ne y - 1$, hence $|x - y| \ne |y|$.

Comparing the last two questions, we see that the difference is whether y is allowed to be rational or not. If x = 1, we need to make $y = \frac{1}{2}$ to make the two absolute values equal.